Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Crit Care ; 28(1): 136, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654391

RESUMO

BACKGROUND: In acute respiratory distress syndrome (ARDS), respiratory drive often differs among patients with similar clinical characteristics. Readily observable factors like acid-base state, oxygenation, mechanics, and sedation depth do not fully explain drive heterogeneity. This study evaluated the relationship of systemic inflammation and vascular permeability markers with respiratory drive and clinical outcomes in ARDS. METHODS: ARDS patients enrolled in the multicenter EPVent-2 trial with requisite data and plasma biomarkers were included. Neuromuscular blockade recipients were excluded. Respiratory drive was measured as PES0.1, the change in esophageal pressure during the first 0.1 s of inspiratory effort. Plasma angiopoietin-2, interleukin-6, and interleukin-8 were measured concomitantly, and 60-day clinical outcomes evaluated. RESULTS: 54.8% of 124 included patients had detectable respiratory drive (PES0.1 range of 0-5.1 cm H2O). Angiopoietin-2 and interleukin-8, but not interleukin-6, were associated with respiratory drive independently of acid-base, oxygenation, respiratory mechanics, and sedation depth. Sedation depth was not significantly associated with PES0.1 in an unadjusted model, or after adjusting for mechanics and chemoreceptor input. However, upon adding angiopoietin-2, interleukin-6, or interleukin-8 to models, lighter sedation was significantly associated with higher PES0.1. Risk of death was less with moderate drive (PES0.1 of 0.5-2.9 cm H2O) compared to either lower drive (hazard ratio 1.58, 95% CI 0.82-3.05) or higher drive (2.63, 95% CI 1.21-5.70) (p = 0.049). CONCLUSIONS: Among patients with ARDS, systemic inflammatory and vascular permeability markers were independently associated with higher respiratory drive. The heterogeneous response of respiratory drive to varying sedation depth may be explained in part by differences in inflammation and vascular permeability.


Assuntos
Biomarcadores , Permeabilidade Capilar , Inflamação , Síndrome do Desconforto Respiratório , Humanos , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Permeabilidade Capilar/fisiologia , Permeabilidade Capilar/efeitos dos fármacos , Inflamação/fisiopatologia , Inflamação/sangue , Idoso , Biomarcadores/sangue , Biomarcadores/análise , Angiopoietina-2/sangue , Angiopoietina-2/análise , Interleucina-8/sangue , Interleucina-8/análise , Interleucina-6/sangue , Interleucina-6/análise , Mecânica Respiratória/fisiologia
2.
Am J Respir Crit Care Med ; 209(7): 789-797, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324017

RESUMO

There is considerable interest in the potential for cell-based therapies, particularly mesenchymal stromal cells (MSCs) and their products, as a therapy for acute respiratory distress syndrome (ARDS). MSCs exert effects via diverse mechanisms including reducing excessive inflammation by modulating neutrophil, macrophage and T-cell function, decreasing pulmonary permeability and lung edema, and promoting tissue repair. Clinical studies indicate that MSCs are safe and well tolerated, with promising therapeutic benefits in specific clinical settings, leading to regulatory approvals of MSCs for specific indications in some countries.This perspective reassesses the therapeutic potential of MSC-based therapies for ARDS given insights from recent cell therapy trials in both COVID-19 and in 'classic' ARDS, and discusses studies in graft-vs.-host disease, one of the few licensed indications for MSC therapies. We identify important unknowns in the current literature, address challenges to clinical translation, and propose an approach to facilitate assessment of the therapeutic promise of MSC-based therapies for ARDS.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Transplante de Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Humanos , Pulmão , Lesão Pulmonar Aguda/etiologia , Terapia Baseada em Transplante de Células e Tecidos
3.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737266

RESUMO

Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), cause severe endothelial dysfunction in the lung, and vascular endothelial growth factor (VEGF) is elevated in ARDS. We found that the levels of a VEGF-regulated microRNA, microRNA-1 (miR-1), were reduced in the lung endothelium after acute injury. Pulmonary endothelial cell-specific (EC-specific) overexpression of miR-1 protected the lung against cell death and barrier dysfunction in both murine and human models and increased the survival of mice after pneumonia-induced ALI. miR-1 had an intrinsic protective effect in pulmonary and other types of ECs; it inhibited apoptosis and necroptosis pathways and decreased capillary leak by protecting adherens and tight junctions. Comparative gene expression analysis and RISC recruitment assays identified miR-1 targets in the context of injury, including phosphodiesterase 5A (PDE5A), angiopoietin-2 (ANGPT2), CNKSR family member 3 (CNKSR3), and TNF-α-induced protein 2 (TNFAIP2). We validated miR-1-mediated regulation of ANGPT2 in both mouse and human ECs and found that in a 119-patient pneumonia cohort, miR-1 correlated inversely with ANGPT2. These findings illustrate a previously unknown role of miR-1 as a cytoprotective orchestrator of endothelial responses to acute injury with prognostic and therapeutic potential.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Síndrome do Desconforto Respiratório , Humanos , Animais , Camundongos , MicroRNAs/genética , Fator A de Crescimento do Endotélio Vascular , Lesão Pulmonar Aguda/genética , Síndrome do Desconforto Respiratório/genética , Endotélio
4.
Intensive Care Med ; 49(8): 957-965, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37470831

RESUMO

PURPOSE: Exposures to ambient air pollutants may prime the lung enhancing risk of acute respiratory distress syndrome (ARDS) in sepsis. Our objective was to determine the association of short-, medium-, and long-term pollutant exposures and ARDS risk in critically ill sepsis patients. METHODS: We analyzed a prospective cohort of 1858 critically ill patients with sepsis, and estimated short- (3 days), medium- (6 weeks), and long- (5 years) term exposures to ozone, nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), particulate matter < 2.5 µm (PM2.5), and PM < 10 µm (PM10) using weighted averages of daily levels from monitors within 50 km of subjects' residences. Subjects were followed for 6 days for ARDS by the Berlin Criteria. The association between each pollutant and ARDS was determined using multivariable logistic regression adjusting for preselected confounders. In 764 subjects, we measured plasma concentrations of inflammatory proteins at presentation and tested for an association between pollutant exposure and protein concentration via linear regression. RESULTS: ARDS developed in 754 (41%) subjects. Short- and long-term exposures to SO2, NO2, and PM2.5 were associated with ARDS risk (SO2: odds ratio (OR) for the comparison of the 75-25th long-term exposure percentile 1.43 (95% confidence interval (CI) 1.16, 1.77); p < 0.01; NO2: 1.36 (1.06, 1.74); p = 0.04, PM2.5: 1.21 (1.04, 1.41); p = 0.03). Long-term exposures to these three pollutants were also associated with plasma interleukin-1 receptor antagonist and soluble tumor necrosis factor receptor-1 concentrations. CONCLUSION: Short and long-term exposures to ambient SO2, PM2.5, and NO2 are associated with increased ARDS risk in sepsis, representing potentially modifiable environmental risk factors for sepsis-associated ARDS.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Síndrome do Desconforto Respiratório , Sepse , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Estudos Prospectivos , Estado Terminal , Material Particulado/efeitos adversos , Material Particulado/análise , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações
5.
Lancet Respir Med ; 11(9): 791-803, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348524

RESUMO

BACKGROUND: There is a clinical need for therapeutics for COVID-19 patients with acute hypoxemic respiratory failure whose 60-day mortality remains at 30-50%. Aviptadil, a lung-protective neuropeptide, and remdesivir, a nucleotide prodrug of an adenosine analog, were compared with placebo among patients with COVID-19 acute hypoxaemic respiratory failure. METHODS: TESICO was a randomised trial of aviptadil and remdesivir versus placebo at 28 sites in the USA. Hospitalised adult patients were eligible for the study if they had acute hypoxaemic respiratory failure due to confirmed SARS-CoV-2 infection and were within 4 days of the onset of respiratory failure. Participants could be randomly assigned to both study treatments in a 2 × 2 factorial design or to just one of the agents. Participants were randomly assigned with a web-based application. For each site, randomisation was stratified by disease severity (high-flow nasal oxygen or non-invasive ventilation vs invasive mechanical ventilation or extracorporeal membrane oxygenation [ECMO]), and four strata were defined by remdesivir and aviptadil eligibility, as follows: (1) eligible for randomisation to aviptadil and remdesivir in the 2 × 2 factorial design; participants were equally randomly assigned (1:1:1:1) to intravenous aviptadil plus remdesivir, aviptadil plus remdesivir matched placebo, aviptadil matched placebo plus remdesvir, or aviptadil placebo plus remdesivir placebo; (2) eligible for randomisation to aviptadil only because remdesivir was started before randomisation; (3) eligible for randomisation to aviptadil only because remdesivir was contraindicated; and (4) eligible for randomisation to remdesivir only because aviptadil was contraindicated. For participants in strata 2-4, randomisation was 1:1 to the active agent or matched placebo. Aviptadil was administered as a daily 12-h infusion for 3 days, targeting 600 pmol/kg on infusion day 1, 1200 pmol/kg on day 2, and 1800 pmol/kg on day 3. Remdesivir was administered as a 200 mg loading dose, followed by 100 mg daily maintenance doses for up to a 10-day total course. For participants assigned to placebo for either agent, matched saline placebo was administered in identical volumes. For both treatment comparisons, the primary outcome, assessed at day 90, was a six-category ordinal outcome: (1) at home (defined as the type of residence before hospitalisation) and off oxygen (recovered) for at least 77 days, (2) at home and off oxygen for 49-76 days, (3) at home and off oxygen for 1-48 days, (4) not hospitalised but either on supplemental oxygen or not at home, (5) hospitalised or in hospice care, or (6) dead. Mortality up to day 90 was a key secondary outcome. The independent data and safety monitoring board recommended stopping the aviptadil trial on May 25, 2022, for futility. On June 9, 2022, the sponsor stopped the trial of remdesivir due to slow enrolment. The trial is registered with ClinicalTrials.gov, NCT04843761. FINDINGS: Between April 21, 2021, and May 24, 2022, we enrolled 473 participants in the study. For the aviptadil comparison, 471 participants were randomly assigned to aviptadil or matched placebo. The modified intention-to-treat population comprised 461 participants who received at least a partial infusion of aviptadil (231 participants) or aviptadil matched placebo (230 participants). For the remdesivir comparison, 87 participants were randomly assigned to remdesivir or matched placebo and all received some infusion of remdesivir (44 participants) or remdesivir matched placebo (43 participants). 85 participants were included in the modified intention-to-treat analyses for both agents (ie, those enrolled in the 2 x 2 factorial). For the aviptadil versus placebo comparison, the median age was 57 years (IQR 46-66), 178 (39%) of 461 participants were female, and 246 (53%) were Black, Hispanic, Asian or other (vs 215 [47%] White participants). 431 (94%) of 461 participants were in an intensive care unit at baseline, with 271 (59%) receiving high-flow nasal oxygen or non-invasive ventiliation, 185 (40%) receiving invasive mechanical ventilation, and five (1%) receiving ECMO. The odds ratio (OR) for being in a better category of the primary efficacy endpoint for aviptadil versus placebo at day 90, from a model stratified by baseline disease severity, was 1·11 (95% CI 0·80-1·55; p=0·54). Up to day 90, 86 participants in the aviptadil group and 83 in the placebo group died. The cumulative percentage who died up to day 90 was 38% in the aviptadil group and 36% in the placebo group (hazard ratio 1·04, 95% CI 0·77-1·41; p=0·78). The primary safety outcome of death, serious adverse events, organ failure, serious infection, or grade 3 or 4 adverse events up to day 5 occurred in 146 (63%) of 231 patients in the aviptadil group compared with 129 (56%) of 230 participants in the placebo group (OR 1·40, 95% CI 0·94-2·08; p=0·10). INTERPRETATION: Among patients with COVID-19-associated acute hypoxaemic respiratory failure, aviptadil did not significantly improve clinical outcomes up to day 90 when compared with placebo. The smaller than planned sample size for the remdesivir trial did not permit definitive conclusions regarding safety or efficacy. FUNDING: National Institutes of Health.


Assuntos
COVID-19 , Insuficiência Respiratória , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , COVID-19/complicações , SARS-CoV-2 , Resultado do Tratamento , Tratamento Farmacológico da COVID-19 , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/etiologia , Oxigênio
6.
Front Immunol ; 14: 1130821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37026003

RESUMO

Introduction: There remains a need to better identify patients at highest risk for developing severe Coronavirus Disease 2019 (COVID-19) as additional waves of the pandemic continue to impact hospital systems. We sought to characterize the association of receptor for advanced glycation end products (RAGE), SARS-CoV-2 nucleocapsid viral antigen, and a panel of thromboinflammatory biomarkers with development of severe disease in patients presenting to the emergency department with symptomatic COVID-19. Methods: Blood samples were collected on arrival from 77 patients with symptomatic COVID-19, and plasma levels of thromboinflammatory biomarkers were measured. Results: Differences in biomarkers between those who did and did not develop severe disease or death 7 days after presentation were analyzed. After adjustment for multiple comparisons, RAGE, SARS-CoV-2 nucleocapsid viral antigen, interleukin (IL)-6, IL-10 and tumor necrosis factor receptor (TNFR)-1 were significantly elevated in the group who developed severe disease (all p<0.05). In a multivariable regression model, RAGE and SARS-CoV-2 nucleocapsid viral antigen remained significant risk factors for development of severe disease (both p<0.05), and each had sensitivity and specificity >80% on cut-point analysis. Discussion: Elevated RAGE and SARS-CoV-2 nucleocapsid viral antigen on emergency department presentation are strongly associated with development of severe disease at 7 days. These findings are of clinical relevance for patient prognostication and triage as hospital systems continue to be overwhelmed. Further studies are warranted to determine the feasibility and utility of point-of care measurements of these biomarkers in the emergency department setting to improve patient prognostication and triage.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Receptor para Produtos Finais de Glicação Avançada , Nucleocapsídeo , Antígenos , Biomarcadores , Antígenos Virais
7.
Mol Cell ; 83(6): 942-960.e9, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36893757

RESUMO

Oxygen is toxic across all three domains of life. Yet, the underlying molecular mechanisms remain largely unknown. Here, we systematically investigate the major cellular pathways affected by excess molecular oxygen. We find that hyperoxia destabilizes a specific subset of Fe-S cluster (ISC)-containing proteins, resulting in impaired diphthamide synthesis, purine metabolism, nucleotide excision repair, and electron transport chain (ETC) function. Our findings translate to primary human lung cells and a mouse model of pulmonary oxygen toxicity. We demonstrate that the ETC is the most vulnerable to damage, resulting in decreased mitochondrial oxygen consumption. This leads to further tissue hyperoxia and cyclic damage of the additional ISC-containing pathways. In support of this model, primary ETC dysfunction in the Ndufs4 KO mouse model causes lung tissue hyperoxia and dramatically increases sensitivity to hyperoxia-mediated ISC damage. This work has important implications for hyperoxia pathologies, including bronchopulmonary dysplasia, ischemia-reperfusion injury, aging, and mitochondrial disorders.


Assuntos
Hiperóxia , Doenças Mitocondriais , Animais , Humanos , Camundongos , Complexo I de Transporte de Elétrons/metabolismo , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Oxigênio/metabolismo
8.
Front Immunol ; 14: 1076772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999019

RESUMO

E-cigarette use has rapidly increased as an alternative means of nicotine delivery by heated aerosolization. Recent studies demonstrate nicotine-containing e-cigarette aerosols can have immunosuppressive and pro-inflammatory effects, but it remains unclear how e-cigarettes and the constituents of e-liquids may impact acute lung injury and the development of acute respiratory distress syndrome caused by viral pneumonia. Therefore, in these studies, mice were exposed one hour per day over nine consecutive days to aerosol generated by the clinically-relevant tank-style Aspire Nautilus aerosolizing e-liquid containing a mixture of vegetable glycerin and propylene glycol (VG/PG) with or without nicotine. Exposure to the nicotine-containing aerosol resulted in clinically-relevant levels of plasma cotinine, a nicotine-derived metabolite, and an increase in the pro-inflammatory cytokines IL-17A, CXCL1, and MCP-1 in the distal airspaces. Following the e-cigarette exposure, mice were intranasally inoculated with influenza A virus (H1N1 PR8 strain). Exposure to aerosols generated from VG/PG with and without nicotine caused greater influenza-induced production in the distal airspaces of the pro-inflammatory cytokines IFN-γ, TNFα, IL-1ß, IL-6, IL-17A, and MCP-1 at 7 days post inoculation (dpi). Compared to the aerosolized carrier VG/PG, in mice exposed to aerosolized nicotine there was a significantly lower amount of Mucin 5 subtype AC (MUC5AC) in the distal airspaces and significantly higher lung permeability to protein and viral load in lungs at 7 dpi with influenza. Additionally, nicotine caused relative downregulation of genes associated with ciliary function and fluid clearance and an increased expression of pro-inflammatory pathways at 7 dpi. These results show that (1) the e-liquid carrier VG/PG increases the pro-inflammatory immune responses to viral pneumonia and that (2) nicotine in an e-cigarette aerosol alters the transcriptomic response to pathogens, blunts host defense mechanisms, increases lung barrier permeability, and reduces viral clearance during influenza infection. In conclusion, acute exposure to aerosolized nicotine can impair clearance of viral infection and exacerbate lung injury, findings that have implications for the regulation of e-cigarette products.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Pneumonia Viral , Camundongos , Animais , Humanos , Nicotina/efeitos adversos , Interleucina-17/farmacologia , Aerossóis e Gotículas Respiratórios , Pulmão , Expressão Gênica
9.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L393-L399, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36749906

RESUMO

Acute respiratory distress syndrome (ARDS) has had no mortality-improving pharmacological intervention despite 50 years of high-caliber research due to its heterogeneity (Huppert LA, Matthay MA, Ware LB. Semin Respir Crit Care Med 40: 31-39, 2019). For the field to advance, better definitions for ARDS subgroups that more uniformly respond to therapies are needed (Bos LDJ, Scicluna BP, Ong DSY, Cremer O, van der Poll T, Schultz MJ. Am J Respir Crit Care Med 200: 42-50, 2019; Dickson RP, Schultz MJ, T van der P, Schouten LR, Falkowski NR, Luth JE, Sjoding MW, Brown CA, Chanderraj R, Huffnagle GB, Bos LDJ, Biomarker Analysis in Septic ICU Patients (BASIC) Consortium. Am J Respir Crit Care Med 201: 555-563, 2020; Sinha P, Calfee CS. Am J Respir Crit Care Med 200: 4-6, 2019; Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA, NHLBI ARDS Network. Lancet Respir Med 2: 611-620, 2014; Hendrickson CM, Matthay MA. Pulm Circ 8: 1-12, 2018). A plethora of high-quality clinical research has uncovered the next generation of soluble biomarkers that provide the predictive enrichment necessary for trial recruitment; however, plasma-soluble markers do not specify the damaged organ of origin nor do they provide insight into disease mechanisms. In this perspective, we make the case for querying the transcriptome of circulating endothelial cells (CECs), which when shed from vessels after inflammatory insult, become heralds of site-specific inflammatory damage. We review the application of CEC quantification to multiple disease phenotypes (including myocardial infarction, vasculitides, cancer, and ARDS), in each case supporting the association of CEC number with disease severity. We also argue for the utility of single-cell RNA transcriptomics to the understanding of cell-specific contributions to disease pathophysiology and its potential to uncover novel insight on signals contributing to CEC shedding in ARDS.


Assuntos
Síndrome do Desconforto Respiratório , Transcriptoma , Humanos , Transcriptoma/genética , Células Endoteliais , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/terapia , Perfilação da Expressão Gênica , Biomarcadores
11.
Am J Respir Crit Care Med ; 206(8): 961-972, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649173

RESUMO

Rationale: Autopsy and biomarker studies suggest that endotheliopathy contributes to coronavirus disease (COVID-19)-associated acute respiratory distress syndrome. However, the effects of COVID-19 on the lung endothelium are not well defined. We hypothesized that the lung endotheliopathy of COVID-19 is caused by circulating host factors and direct endothelial infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objectives: We aimed to determine the effects of SARS-CoV-2 or sera from patients with COVID-19 on the permeability and inflammatory activation of lung microvascular endothelial cells. Methods: Human lung microvascular endothelial cells were treated with live SARS-CoV-2; inactivated viral particles; or sera from patients with COVID-19, patients without COVID-19, and healthy volunteers. Permeability was determined by measuring transendothelial resistance to electrical current flow, where decreased resistance signifies increased permeability. Inflammatory mediators were quantified in culture supernatants. Endothelial biomarkers were quantified in patient sera. Measurements and Main Results: Viral PCR confirmed that SARS-CoV-2 enters and replicates in endothelial cells. Live SARS-CoV-2, but not dead virus or spike protein, induces endothelial permeability and secretion of plasminogen activator inhibitor 1 and vascular endothelial growth factor. There was substantial variability in the effects of SARS-CoV-2 on endothelial cells from different donors. Sera from patients with COVID-19 induced endothelial permeability, which correlated with disease severity. Serum levels of endothelial activation and injury biomarkers were increased in patients with COVID-19 and correlated with severity of illness. Conclusions: SARS-CoV-2 infects and dysregulates endothelial cell functions. Circulating factors in patients with COVID-19 also induce endothelial cell dysfunction. Our data point to roles for both systemic factors acting on lung endothelial cells and viral infection of endothelial cells in COVID-19-associated endotheliopathy.


Assuntos
COVID-19 , Doenças Vasculares , Biomarcadores/metabolismo , Células Endoteliais/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Pulmão , Inibidor 1 de Ativador de Plasminogênio/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Doenças Vasculares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 323(2): L152-L164, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35670478

RESUMO

Electronic cigarettes (e-cigarettes) are designed to simulate combustible cigarette smoking and to aid in smoking cessation. Although the number of e-cigarette users has been increasing, the potential health impacts and biological effects of e-cigarettes are still not fully understood. Previous research has focused on the biological effects of e-cigarettes on lung cancer cell lines and distal airway epithelial cells; however, there have been few published studies on the effect of e-cigarettes on primary lung alveolar epithelial cells. The primary purpose of this study was to investigate the direct effect of e-cigarette aerosol on primary human lung alveolar epithelial type 2 (AT2) cells, both alone and in the presence of viral infection. The Melo-3 atomizer caused direct AT2 cell toxicity, whereas the more popular Juul pod's aerosol did not have a detectable cytotoxic effect on AT2 cells. Juul nicotine aerosol also did not increase short-term susceptibility to viral infection. However, 3 days of exposure upregulated genes central to the generation of reactive oxygen species, lipid peroxidation, and carcinogen metabolism and downregulated key innate immune system genes related to cytokine and chemokine signaling. These findings have implications for the potentially injurious impact of long-term use of popular low-power e-cigarette pods on the human alveolar epithelium. Gene expression data might be an important endpoint for evaluating the potential harmful effects of vaping devices that do not cause overt toxicity.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Células Epiteliais Alveolares , Humanos , Nicotina/efeitos adversos , Aerossóis e Gotículas Respiratórios , Vaping/efeitos adversos
13.
Am J Respir Cell Mol Biol ; 67(3): 284-308, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35679511

RESUMO

Clinical and molecular heterogeneity are common features of human disease. Understanding the basis for heterogeneity has led to major advances in therapy for many cancers and pulmonary diseases such as cystic fibrosis and asthma. Although heterogeneity of risk factors, disease severity, and outcomes in survivors are common features of the acute respiratory distress syndrome (ARDS), many challenges exist in understanding the clinical and molecular basis for disease heterogeneity and using heterogeneity to tailor therapy for individual patients. This report summarizes the proceedings of the 2021 Aspen Lung Conference, which was organized to review key issues related to understanding clinical and molecular heterogeneity in ARDS. The goals were to review new information about ARDS phenotypes, to explore multicellular and multisystem mechanisms responsible for heterogeneity, and to review how best to account for clinical and molecular heterogeneity in clinical trial design and assessment of outcomes. The report concludes with recommendations for future research to understand the clinical and basic mechanisms underlying heterogeneity in ARDS to advance the development of new treatments for this life-threatening critical illness.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Pulmão , Fatores de Risco , Índice de Gravidade de Doença , Tórax
15.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L771-L783, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318859

RESUMO

Although vitamin E acetate (VEA) is suspected to play a causal role in the development of electronic-cigarette, or vaping, product use-associated lung injury (EVALI), the underlying biological mechanisms of pulmonary injury are yet to be determined. In addition, no study has replicated the systemic inflammation observed in humans in a murine EVALI model, nor investigated potential additive toxicity of viral infection in the setting of exposure to vaping products. To identify the mechanisms driving VEA-related lung injury and test the hypothesis that viral infection causes additive lung injury in the presence of aerosolized VEA, we exposed mice to aerosolized VEA for extended times, followed by influenza infection in some experiments. We used mass spectrometry to evaluate the composition of aerosolized VEA condensate and the VEA deposition in murine or human alveolar macrophages. Extended vaping for 28 days versus 15 days did not worsen lung injury but caused systemic inflammation in the murine EVALI model. Vaping plus influenza increased lung water compared with virus alone. Murine alveolar macrophages exposed to vaped VEA hydrolyzed the VEA to vitamin E with evidence of oxidative stress in the alveolar space and systemic circulation. Aerosolized VEA also induced cell death and chemokine release and reduced efferocytotic function in human alveolar macrophages in vitro. These findings provide new insights into the biological mechanisms of VEA toxicity.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Influenza Humana , Lesão Pulmonar , Vaping , Acetatos/química , Animais , Humanos , Inflamação/induzido quimicamente , Lesão Pulmonar/induzido quimicamente , Macrófagos Alveolares/metabolismo , Camundongos , Estresse Oxidativo , Vaping/efeitos adversos , Vitamina E/farmacologia
16.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35298440

RESUMO

BackgroundThe value of the soluble receptor for advanced glycation end-products (sRAGE) as a biomarker in COVID-19 is not well understood. We tested the association between plasma sRAGE and illness severity, viral burden, and clinical outcomes in hospitalized patients with COVID-19 who were not mechanically ventilated.MethodsBaseline sRAGE was measured among participants enrolled in the ACTIV-3/TICO trial of bamlanivimab for hospitalized patients with COVID-19. Spearman's rank correlation was used to assess the relationship between sRAGE and other plasma biomarkers, including viral nucleocapsid antigen. Fine-Gray models adjusted for baseline supplemental oxygen requirement, antigen level, positive endogenous anti-nucleocapsid antibody response, sex, age, BMI, diabetes mellitus, renal impairment, corticosteroid treatment, and log2-transformed IL-6 level were used to assess the association between baseline sRAGE and time to sustained recovery. Cox regression adjusted for the same factors was used to assess the association between sRAGE and mortality.ResultsAmong 277 participants, baseline sRAGE was strongly correlated with viral plasma antigen concentration (ρ = 0.57). There was a weaker correlation between sRAGE and biomarkers of systemic inflammation, such as IL-6 (ρ = 0.36) and CRP (ρ = 0.20). Participants with plasma sRAGE in the highest quartile had a significantly lower rate of sustained recovery (adjusted recovery rate ratio, 0.64 [95% CI, 0.43-0.90]) and a higher unadjusted risk of death (HR, 4.70 [95% CI, 2.01-10.99]) compared with participants in the lower quartiles.ConclusionElevated plasma sRAGE in hospitalized, nonventilated patients with COVID-19 was an indicator of both clinical illness severity and plasma viral load. Plasma sRAGE in the highest quartile was associated with a lower likelihood of sustained recovery and higher unadjusted risk of death. These findings, which we believe to be novel, indicate that plasma sRAGE may be a promising biomarker for COVID-19 prognostication and clinical trial enrichment.Trial RegistrationClinicalTrials.gov NCT04501978.FundingNIH (5T32GM008440-24, 18X107CF6, HHSN261201500003I, R35HL140026, and OT2HL156812).


Assuntos
COVID-19 , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Biomarcadores , Humanos , Interleucina-6 , Prognóstico , Receptor para Produtos Finais de Glicação Avançada
17.
Sci Transl Med ; 14(635): eabm8646, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35263147

RESUMO

Impaired baseline lung function is associated with mortality after pediatric allogeneic hematopoietic cell transplantation (HCT), yet limited knowledge of the molecular pathways that characterize pretransplant lung function has hindered the development of lung-targeted interventions. In this study, we quantified the association between bronchoalveolar lavage (BAL) metatranscriptomes and paired pulmonary function tests performed a median of 1 to 2 weeks before allogeneic HCT in 104 children in The Netherlands. Abnormal pulmonary function was recorded in more than half the cohort, consisted most commonly of restriction and impaired diffusion, and was associated with both all-cause and lung injury-related mortality after HCT. Depletion of commensal supraglottic taxa, such as Haemophilus, and enrichment of nasal and skin taxa, such as Staphylococcus, in the BAL microbiome were associated with worse measures of lung capacity and gas diffusion. In addition, BAL gene expression signatures of alveolar epithelial activation, epithelial-mesenchymal transition, and down-regulated immunity were associated with impaired lung capacity and diffusion, suggesting a postinjury profibrotic response. Detection of microbial depletion and abnormal epithelial gene expression in BAL enhanced the prognostic utility of pre-HCT pulmonary function tests for the outcome of post-HCT mortality. These findings suggest a potentially actionable connection between microbiome depletion, alveolar injury, and pulmonary fibrosis in the pathogenesis of pre-HCT lung dysfunction.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Microbiota , Fibrose Pulmonar , Criança , Humanos , Pulmão/metabolismo , Microbiota/genética , Transcriptoma/genética
18.
Crit Care Med ; 50(3): e284-e293, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593707

RESUMO

OBJECTIVES: Multiple organ failure in critically ill patients is associated with poor prognosis, but biomarkers contributory to pathogenesis are unknown. Previous studies support a role for Fas cell surface death receptor (Fas)-mediated apoptosis in organ dysfunction. Our objectives were to test for associations between soluble Fas and multiple organ failure, identify protein quantitative trait loci, and determine associations between genetic variants and multiple organ failure. DESIGN: Retrospective observational cohort study. SETTING: Four academic ICUs at U.S. hospitals. PATIENTS: Genetic analyses were completed in a discovery (n = 1,589) and validation set (n = 863). Fas gene expression and flow cytometry studies were completed in outpatient research participants (n = 250). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: In discovery and validation sets of critically ill patients, we tested for associations between enrollment plasma soluble Fas concentrations and Sequential Organ Failure Assessment score on day 3. We conducted a genome-wide association study of plasma soluble Fas (discovery n = 1,042) and carried forward a single nucleotide variant in the FAS gene, rs982764, for validation (n = 863). We further tested whether the single nucleotide variant in FAS (rs982764) was associated with Sequential Organ Failure Assessment score, FAS transcriptional isoforms, and Fas cell surface expression. Higher plasma soluble Fas was associated with higher day 3 Sequential Organ Failure Assessment scores in both the discovery (ß = 4.07; p < 0.001) and validation (ß = 6.96; p < 0.001) sets. A single nucleotide variant in FAS (rs982764G) was associated with lower plasma soluble Fas concentrations and lower day 3 Sequential Organ Failure Assessment score in meta-analysis (-0.21; p = 0.02). Single nucleotide variant rs982764G was also associated with a lower relative expression of the transcript for soluble as opposed to transmembrane Fas and higher cell surface expression of Fas on CD4+ T cells. CONCLUSIONS: We found that single nucleotide variant rs982764G was associated with lower plasma soluble Fas concentrations in a discovery and validation population, and single nucleotide variant rs982764G was also associated with lower organ dysfunction on day 3. These findings support further study of the Fas pathway as a potential mediator of organ dysfunction in critically ill patients.


Assuntos
Estado Terminal/epidemiologia , Insuficiência de Múltiplos Órgãos/epidemiologia , Receptor fas/genética , Adulto , Idoso , Apoptose , Biomarcadores , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/sangue , Escores de Disfunção Orgânica , Polimorfismo de Nucleotídeo Único , Receptor fas/sangue
19.
J Intensive Care Med ; 37(6): 793-802, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34165010

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a highly morbid condition that has limited therapeutic options. Optimal vitamin D status has been linked to immunological effects that may benefit critically ill patients. Therefore, we investigated whether admission 25-hydroxyvitamin D levels (25OHD) are associated with clinical outcomes in ARDS patients. METHODS: We performed a secondary analysis of data from a randomized, controlled trial comparing oxygenation strategies in 549 patients with ARDS (NCT00000579). Baseline 25OHD was measured in stored plasma samples. We investigated the relationship between vitamin D status and ventilator-free days (VFD) as well as 90-day survival, using linear regression and Cox proportional hazard models, respectively. Analyses were adjusted for age, race, and Acute Physiology and Chronic Health Evaluation III score. RESULTS: Baseline 25OHD was measured in 476 patients. 90% of these individuals had 25OHD <20 ng/ml and 40% had 25OHD <10 ng/ml. Patients with 25OHD <20 ng/ml were likely to be ventilated for 3 days longer than patients with levels ≥20 ng/ml (ß 3.41; 95%CI 0.42-6.39: P = 0.02). Patients with 25OHD <10 ng/ml were likely to be ventilated for 9 days longer (ß 9.27; 95%CI 7.24-11.02: P < 0.001) and to have a 34% higher risk of 90-day mortality (HR 1.34; 95% CI 1.06-1.71: P = 0.02) compared to patients with levels >10 ng/ml. CONCLUSIONS: In patients with ARDS, vitamin D status is associated with duration of mechanical ventilation and 90-day mortality. Randomized, controlled trials are warranted to determine whether vitamin D supplementation improves clinical outcomes in ARDS patients.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Humanos , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/terapia , Volume de Ventilação Pulmonar , Vitamina D
20.
Ann Intern Med ; 175(2): 234-243, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34928698

RESUMO

BACKGROUND: In a randomized, placebo-controlled, clinical trial, bamlanivimab, a SARS-CoV-2-neutralizing monoclonal antibody, given in combination with remdesivir, did not improve outcomes among hospitalized patients with COVID-19 based on an early futility assessment. OBJECTIVE: To evaluate the a priori hypothesis that bamlanivimab has greater benefit in patients without detectable levels of endogenous neutralizing antibody (nAb) at study entry than in those with antibodies, especially if viral levels are high. DESIGN: Randomized, placebo-controlled trial. (ClinicalTrials.gov: NCT04501978). SETTING: Multicenter trial. PATIENTS: Hospitalized patients with COVID-19 without end-organ failure. INTERVENTION: Bamlanivimab (7000 mg) or placebo. MEASUREMENTS: Antibody, antigen, and viral RNA levels were centrally measured on stored specimens collected at baseline. Patients were followed for 90 days for sustained recovery (defined as discharge to home and remaining home for 14 consecutive days) and a composite safety outcome (death, serious adverse events, organ failure, or serious infections). RESULTS: Among 314 participants (163 receiving bamlanivimab and 151 placebo), the median time to sustained recovery was 19 days and did not differ between the bamlanivimab and placebo groups (subhazard ratio [sHR], 0.99 [95% CI, 0.79 to 1.22]; sHR > 1 favors bamlanivimab). At entry, 50% evidenced production of anti-spike nAbs; 50% had SARS-CoV-2 nucleocapsid plasma antigen levels of at least 1000 ng/L. Among those without and with nAbs at study entry, the sHRs were 1.24 (CI, 0.90 to 1.70) and 0.74 (CI, 0.54 to 1.00), respectively (nominal P for interaction = 0.018). The sHR (bamlanivimab vs. placebo) was also more than 1 for those with plasma antigen or nasal viral RNA levels above median level at entry and was greatest for those without antibodies and with elevated levels of antigen (sHR, 1.48 [CI, 0.99 to 2.23]) or viral RNA (sHR, 1.89 [CI, 1.23 to 2.91]). Hazard ratios for the composite safety outcome (<1 favors bamlanivimab) also differed by serostatus at entry: 0.67 (CI, 0.37 to 1.20) for those without and 1.79 (CI, 0.92 to 3.48) for those with nAbs. LIMITATION: Subgroup analysis of a trial prematurely stopped because of futility; small sample size; multiple subgroups analyzed. CONCLUSION: Efficacy and safety of bamlanivimab may differ depending on whether an endogenous nAb response has been mounted. The limited sample size of the study does not allow firm conclusions based on these findings, and further independent trials are required that assess other types of passive immune therapies in the same patient setting. PRIMARY FUNDING SOURCE: U.S. government Operation Warp Speed and National Institute of Allergy and Infectious Diseases.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/efeitos adversos , Monofosfato de Adenosina/uso terapêutico , Idoso , Alanina/efeitos adversos , Alanina/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Neutralizantes/efeitos adversos , Anticorpos Neutralizantes/sangue , Antígenos Virais/sangue , Antivirais/efeitos adversos , Biomarcadores/sangue , COVID-19/sangue , COVID-19/virologia , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Humanos , Masculino , Futilidade Médica , Pessoa de Meia-Idade , RNA Viral/sangue , SARS-CoV-2 , Falha de Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA